If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x-122=0
a = 1; b = 6; c = -122;
Δ = b2-4ac
Δ = 62-4·1·(-122)
Δ = 524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{524}=\sqrt{4*131}=\sqrt{4}*\sqrt{131}=2\sqrt{131}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{131}}{2*1}=\frac{-6-2\sqrt{131}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{131}}{2*1}=\frac{-6+2\sqrt{131}}{2} $
| 28+x+x+68=88 | | 3=12d | | 14+14(3-2x)+9=8-x+5(2-3x) | | 2(5x-5)=3(3x-3)+14 | | 2(5x5)=3(3x-3)+14 | | 5x-9+2x-6+x=7x+4 | | 3(x-8)=4x+6 | | .10x=650 | | -6(4x+3)=54 | | .1x=650 | | 10x=650 | | 10x+18x-6+3=9x+3-6 | | 7x-10+6x=9+x+17 | | 12x+1+11+12x=180 | | 9m+11-8m-6+5m=0 | | 1+2x-4=9 | | D(t)=-49t^2+14.7t+49 | | 4-99x^2-25x^2=0 | | 3w13=–78 | | 2y+7=56 | | 12+17x+3=13x+46+3x | | 7x=360.80 | | 6(4x+10)=300 | | 12x+12+6x+6=180 | | 3x+120=120 | | 3x+58=163 | | xx7-37=110 | | X+21=-4x+3 | | 17x-3+29x-1=180 | | 9(x-5)=-45 | | 2(5x+9)=3(3x-8)+22 | | (x+40)+60=90 |